EVALUATION OF DYNAMIC MONITORS FOR THE PREDICTION OF VOLUME **RESPONSIVENESS IN PATIENTS WITH AND WITHOUT DIASTOLIC** DYSFUNCTION

Presenter: Anastasiia Zhelokhovtseva

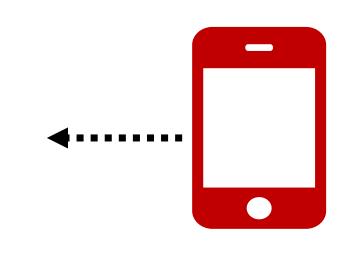
Background

- Intra-operative optimization of cardiac function can decrease incidence of complications
- Current gold standards to guide optimization are Pulse Pressure Variation (PPV) and Stroke Volume Variation (SVV)
- Left ventricular dysfunction is known to predict adverse cardiovascular outcomes (MACE), inhospital mortality and extra fluid support
- Does left ventricular dysfunction alter the threshold for dynamic monitors and their ability to predict volume responsiveness?

Methods

- IRB approval collected with written consent
- Data collected from UC Davis Medical Center at the end of each case
- TTE was used to assess DD grading prior anesthesia induction
- Ventilation 8ml/kg (IBW), PEEP 5cm H₂O
- IV fluids were administered at a basal infusion rate of 1ml/kg (ABW)/hr
- As hemodynamic parameters necessitated, crystalloid or colloid was infused
- Response to each fluid bolus was recorded by the Flotrac/EV-1000 monitor
- Data was analyzed as a 3 minute average with a 2 minute delay pre and post bolus
- Comparisons were made between patients with and without DD
- ROC analysis using PRISM, Youden's index (YI) and plot using Microsoft Excel 2019

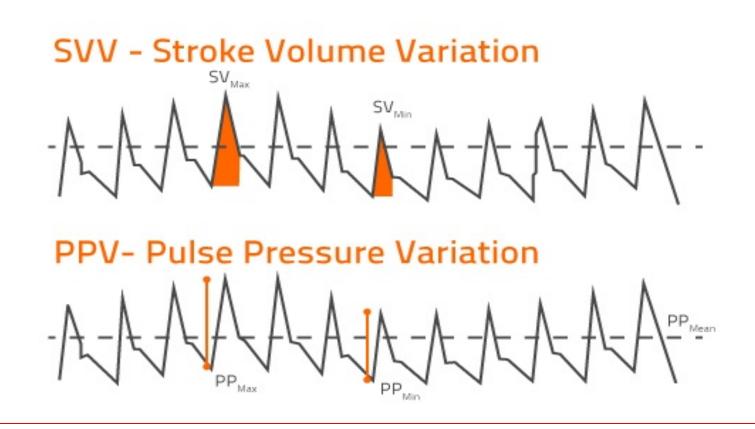
Raw Data Sample


Time	CO	SV	SVV	SYS	DIA	MAP
	L/min	mL/b	%	mmHg	mmHg	mmHg
10:30:31 am	6.3	91	8	157	59	82
10:31:31 am	6.4	93	8	158	61	84
10:32:31 am	6.5	96	8	159	60	84
10:33:31 am	6.5	97	7	158	60	83
10:34:31 am	6.5	94	7	147	57	79
10:35:31 am	6.4	92	7	144	57	78
10:36:31 am	6.3	88	7	134	54	74
10:37:31 am	6.2	89	8	126	52	71
10:38:31 am	6	85	8	123	52	70
10:39:31 am	5.8	83	8	122	52	70
10:40:31 am	5.7	80	8	130	55	75

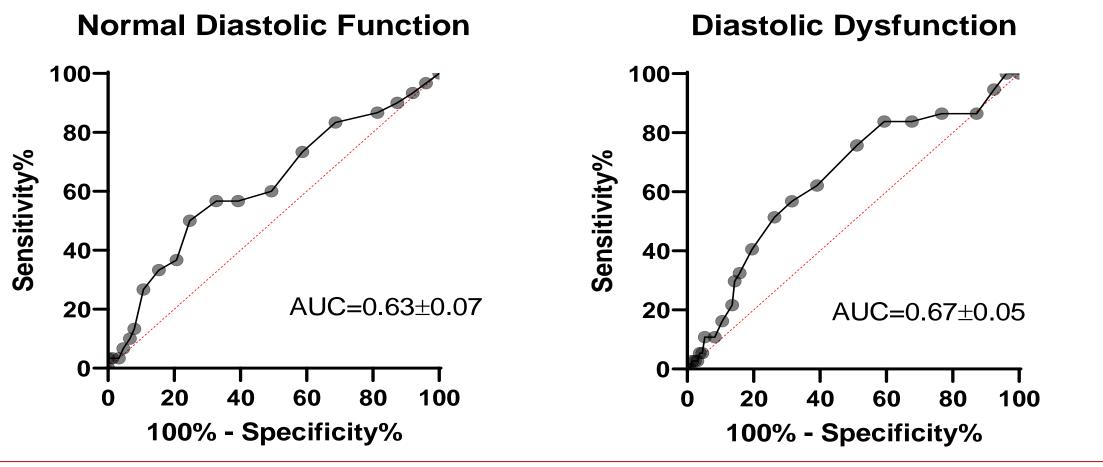
Sample Calculations

10:35:02 am	Crystalloid 200 mL					
	CO	SV	SVV	SYS	DIA	MAP
	L/min	mL/b	%	mmHg	mmHg	mmHg
Pre	=AVERAGE(6.5+6.4.+6.3)	93	8	158	60	83
Post	=AVERAGE(6+5.8+5.7)	83	8	125	53	72

At this time, more data is needed to accurately characterize the SVV threshold in patients with left ventricular diastolic dysfunction that would predict fluid responsiveness.



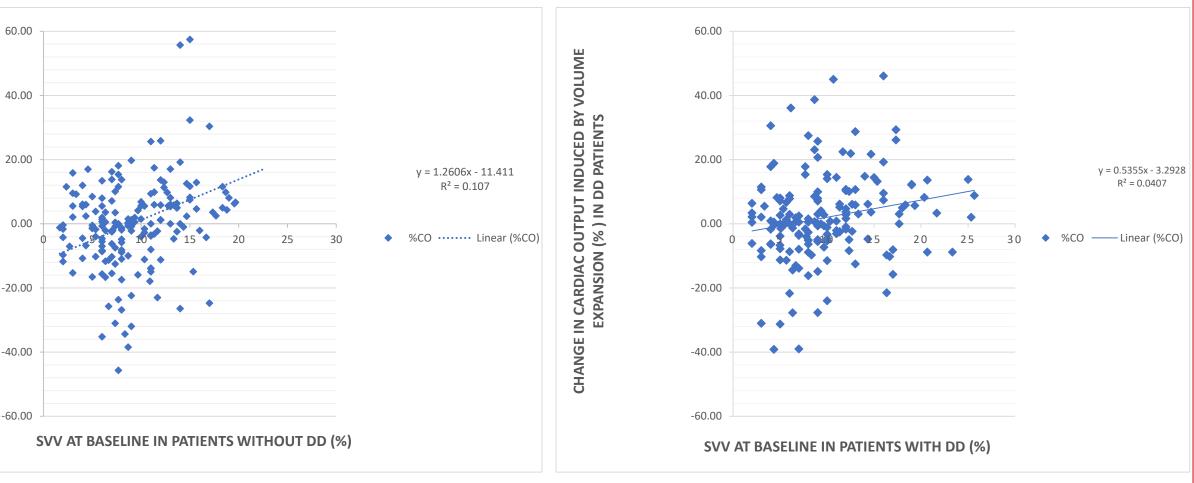
Take a picture to download the abstract


- General anesthesia might alter the diastolic dysfunction grading

Anastasiia Zhelokhovtseva, B.S., University of California, Davis Neal W. Fleming, M.D., Ph.D., Department of Anesthesiology and Pain Medicine, University of California, Davis David Li, M.D., University of California, Davis Orode Badakhsh, M.D., University of California, Davis Esha Lal, University of California, San Diego Shilpa Reddy, University of Texas at Austin

Results

• To date, 68 patients were recruited for the study • Mean age of 69 ± 10.3 years and BMI of 26 ± 4.6 • Patients without DD: SVV threshold of 11.5 at YI of 0.2533 • Patients with DD: SVV threshold of 10.5 at YI of 0.2518



Discussion

Current sample size is too small for conclusions

 Further data collection and analysis is needed to fully characterize the relationship

Additional (non-essential) results

References

Monnet, X., Marik, P.E. & Teboul, J. Prediction of fluid responsiveness: an update. Ann. Intensive Care 6, 111 (2016) Fayad, A., Ansari, M. T., Yang, H., Ruddy, T., & Wells, G. A. (2016). Perioperative Diastolic Dysfunction in Patients Undergoing Noncardiac Surgery Is an Independent Risk Factor for Cardiovascular Events. Anesthesiology, 125(1), 72-

Swaminathan, M., Nicoara, A., Phillips-Bute, B. G., Aeschlimann, N., Milano, C. A., Mackensen, G. B., ... Mathew, J. P. (2011). Utility of a Simple Algorithm to Grade Diastolic Dysfunction and Predict Outcome After Coronary Artery Bypass Graft Surgery. The Annals of Thoracic Surgery, 91(6), 1844-1850.

EVALUATION OF DYNAMIC MONITORS FOR THE PREDICTION OF VOLUME RESPONSIVENESS IN PATIENTS WITH AND WITHOUT DIASTOLIC DYSFUNCTION Anastasiia Zhelokhovtseva, B.S., University of California, Davis Neal W. Fleming, M.D., Ph.D., Department of Anesthesiology and Pain Medicine, University of California, Davis David Li, M.D., University of California, Davis Orode Badakhsh, M.D., University of California, Davis Esha Lal, University of California, San Diego Shilpa Reddy, University of Texas at Austin